added to the S-SOCI2 solution previously prepared from the well-dried S. The immediate precipitation of S was observed where the H₂O droplets contacted the SOCI₂.

Thus, neither hydrolysis product causes S to precipitate from SOCI₂ solution, whereas H₂O itself apparently does have this effect. With this in mind, the results of the water addition experiment described above (section E) are immediately explained. Because the water was combined with a portion of SOCI2 before it was added to the hot sulfur solution, what contacted the sulfur solution was primarily a solution of HCI and SO₂ in SOCI₂. Hence, the sulfur solubility was relatively unaffected.

Thus, while we have gained some understanding of how water and the products of the reaction between water and SOCI2 affect the sulfur solubility, we have not been able to explain the scatter in the S solubility measurements themselves (since the experiments were performed with carefully dried chemicals and glassware). Nevertheless, that the averaged experimental results are reliable is certainly suggested by the good agreement between the accepted value of the S₈ heat of fusion and the values from the least-squares data analyses.

Glossary

 $\Delta H_{\rm fus}$ heat of fusion, cal/gram formula weight

- $\Delta H_{\rm sol}$ heat of solution, cal/mol
- R ideal gas constant, cal/(deg mol)
- Т absolute temperature, K
- T₀ melting point, K
- mole fraction х
- proportionality constant α

Literature Cited

- Auborn, J. J., French, K. W., Lieberman, S. I., Shah, V. K., Heller, A., J. Electrochem. Soc., **120**, 1613 (1973).
 Dey, A. N., Schlaikjer, C. R., Power Sources Symp., Proc., 26th, 47
- (1974)
- Dey, A. N., Thin Solid Films, 43, 131 (1977).
 Schlaikjer, C. R., Goebel, F., Marincic, N., accepted for publication in I. Electrochem. Soc. (5) Holleck, G. L., Turchan, M. J., Toland, D. E., "Lithium-Inorganic Electrolyte
- Batteries", ECOM-74-0030-5 (1975).
- (6) Holleck, G. L., Driscoll, J. R., Toland, D. E., "Lithium-Inorganic Electrolyte Batteries", ECOM-74-0030-6 (1975). (7) Lewis, G. N., Randall, M., "Thermodynamics", McGraw-Hill, New York,
- 1961, p 228. (8)
- Stull, D. K., Sinke, G. C., "Thermodynamic Properties of the Elements", American Chemical Society, Washington, D.C., 1956, p 192. Hildebrand, J. H., Scott, R. L., "Regular Solutions", Prentice-Hall, Englewood (9)
- Cliffs, N.J., 1962, p 23.

Received for review August 25, 1978. Accepted March 16, 1979. This work was sponsored by the Office of Naval Research under Contract No. 14-76-C-0524.

Enthalpy of Solution of 32% Nitrogen Solutions at 25 °C

Basil B. Luff* and Robert B. Reed

Division of Chemical Development, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama 35660

Measurements were made of the enthalpy of solutions at 25 °C of 50.36% ammonium nitrate solution in urea solutions. Measurements also were made of the enthalples of dilution to near infinite dilution of urea-ammonium nitrate solutions. The results were combined with published values of the enthalples of solution of ammonium nitrate and urea, respectively, in water to determine the enthalpy of producing certain fertilizer solutions from the compounds.

The amount of energy required to avoid freezing during the preparation of 32% nitrogen solution from urea, ammonium nitrate, and water is important in the design of boilers for the process. No data are available for the enthalpy change involved.

The integral enthalpy of solution over the concentration range 0-9.7% nitrogen was determined by the scheme

$$NH_4NO_3 + xH_2O = NH_4NO_3 \cdot xH_2O \tag{1}$$

$$CO(NH_2)_2 + yH_2O = CO(NH_2)_2 \cdot yH_2O$$
 (2)

 $NH_4NO_3 \cdot xH_2O + a[CO(NH_2)_2 \cdot yH_2O] =$ $NH_4NO_3 \cdot aCO(NH_2)_2 \cdot (x + ay)H_2O$ (3)

$$(1) + a(2) + (3) = (4)$$

$$NH_4NO_3 + aCO(NH_2)_2 + (x + ay)H_2O = NH_4NO_3 \cdot aCO(NH_2)_2 \cdot (x + ay)H_2O$$
(4)

where a is the mole ratio of $CO(NH_2)_2$ to NH_4NO_3 in the 32% nitrogen solution.

Table I. Solutions Used in the Determination of Enthalpy of Solution of Ammonium Nitrate Solutions in Urea Solutions

		solution o	solution compn, %		
solution	% N	CO(NH ₂) ₂	NH ₄ NO ₃		
AN	17.62		50.36		
U5	2.36	5.06			
U10	4.74	10.16			
U15	7.02	15.05			

One ammonium nitrate solution and three urea solutions were prepared by dissolving the reagent-grade compounds in distilled water. The chemical analyses $^{2,3}\ {\rm and}\ {\rm the}\ {\rm percentages}\ {\rm of}\$ ammonium nitrate and urea calculated from the analyses are listed in Table I.

The enthalpy of reaction 1, ΔH_1 (4220 cal), was determined by substracting the enthalpy of formation of NH₄NO₃(c) from the enthalpy of formation of 50.36% NH₄NO₃ (NH₄NO₃·4.380H₂O).⁵ The enthalpy of reaction 2, ΔH_2 , for each urea solution was determined from the data of Egan and Luff.¹

The ammonium nitrate solution was added to each urea solution in successive increments in the solution calorimeter and the differential enthalpy of solution, $d(\Delta H)/dm_s$, was determined in calories per mole at the average molality, m_s, of NH₄N-O₃•4.380H₂O for each measurement.

The solution calorimeter and the method of measurement have been described⁴ with the exception that the Wenner potentiometer and Aryton shunt were replaced by a Hewlett-Packard Model 3490A multimeter that measured the voltage drop across the calorimeter heater directly. The defined calorie was taken as 4.184 absolute J; and corrections were made for the

This article not subject to U.S. Copyright. Published 1979 by the American Chemical Society

Journal of Chemical and	Engineering Data.	Vol. 24.	No. 3.	1979	207

Table II. Observed Differential Enthalpies of Solution of NH_4NO_3 ·4.380H₂O in Urea Solutions at 25 °C

	NH₄NO₃·	<i>m</i> s, av molality	
	4.380H ₂ O	NH ₄ NO ₃ ·	$d\Delta H/dm_s$,
wt soln, g	added, g	4.380H ₂ O	cal/mol
	Solvent $= 5.0$	6% Urea	
860.2276	20.912 16	0.075 56	1688
864.3836	20.903 26	0.229 94	1621
867.8107	20.227 17	0.384 84	1538
871.6013	22.794 47	0.549 82	1456
875.2427	23.724 77	0.731 97	1370
	Solvent = 10		
871.9454	21.985 72	0.078 33	1440
875.9889	21.681 53	0.237 49	1380
879.2134	22.017 21	0.400 03	1308
882.9999	21.464 92	0.565 18	1236
886.7188	23.287 05	0.738 47	1169
890.2392	23.674 53	0.924 24	1096
893.5970	22.896 00	1.112 68	1029
896.8775	21.632 63	1.388 42	
900.3297	22.679 53	1.483 95	914
903.3421	23.888 97	1.684 63	859
	Solvent $= 15$.	05% Urea	
883.9395	21.233 96	0.074 67	1216
887.2908	21.810 34	0.299 36	1178
890.3382	23.380 34	0.395 05	1111
893.9785	21.716 82	0.564 14	1050
897.1552	23.316 89	0.736 42	991
900.6070	22.700 80	0.916 37	935
903.5854	21.750 15	1.094 01	881
906.5367	22.109 54	1.272 94	831
909.6591	23.068 88	1.461 06	782
912.7045	24.446 17	1.663 12	734
915.6770	22.277 37	1.866 53	692
918.5028	22.124 94	2.064 03	650
920.6951	21.958 70	2.264 30	612

Table III. Coefficients and Standard Deviations of Equations for the Differential Enthalpy of Solution of NH_4NO_3 ·4.380H₂O in Urea Solutions at 25 °C

	urca	urca content of solvents, %					
coefficients	5.06	10.16	15.05				
A	+1716	+1471	+1243				
В	-326.8	-365.4	-303.2				
С	-483.9	-159.7	-109.4				
D	+38.88	+160.7	+97.50				
Ε		-38.78	-19.66				
std dev	3	2	4				

heat leak, for vaporization of water into the vapor space above the liquid in the calorimeter, and for the energy of bulb breaking.

The weights of the initial solutions, the weights of ammonium nitrate solution added, the average molalities of NH_4NO_3 · 4.380H₂O, and the observed differential enthalpies of solution for each urea solution are shown in Table II.

An equation of the form

 $d(\Delta H)/dm_s = A + Bm_s + Cm_s^2 + Dm_s^3 + Em_s^4$ (5)

was fitted to the observed values for each urea solution by the method of least squares. Integrating these equations from $m_s = 0$ to m_s and dividing by m_s gives equations of the form (Table III)

$$H = A + Bm_{\rm s}/2 + Cm_{\rm s}^2/3 + Dm_{\rm s}^3/4 + Em_{\rm s}^4/5$$
(6)

In order to establish the value of *a* in reaction 3 and to prepare solutions for the measurement of enthalpies of dilution described later, a solution similar to the 32% nitrogen solution was prepared from reagent-grade urea and ammonium nitrate and distilled water. The concentration of $CO(NH_2)_2$ and NH_4NO_3 in the solution and the value for *a* were determined by chemical

Table IV.	Solutions Used	l for	Enthalpy	of
Dilution M	leasurements ^a			

	compn, %		solution	compn, %	
soln	total N	urea N	NH ₄ NO ₃	CO(NH ₂)	
UAN-20	30.57	16.52	40.15	35.42	
	gra	ms	solution	compn, %	
soln	UAN-20	H ₂ O	NH ₄ NO ₃	CO(NH ₂) ₂	
UAN-5 UAN-10 UAN-15	115.28 163.28 184.16	87.50 42.00 16.54	22.83 31.94 36.84	20.14 28.17 32.50	

^{*a*} *a* for all solutions = 1.1758.

Table V.	Integral Enthalpy of Solutions of NH ₄ NO ₃ +	
1.1758CO	(NH), in Water at 25 °C	

	urea content of starting solutions, $\%$		
	5.06	10.16	15.05
x	4.380	4.380	4.380
ΔH_1 , cal	4220	4220	4220
y .	62.548	29.477	18.817
ΔH_{2} , cal	3586	3516	3451
a	1.1758	1.1758	1.1758
$m_{s} \diamond a$	0.7165	1.4388	2.1313
(x + ay)	77.924	39.039	26.505
ΔH_{3} , cal	1518	1184	909
ΔH_{A} , cal	9954	9538	9187
$m_t \diamond m_s$	0.7123	1.4219	2.0943

Table VI. Enthalpy of Dilution and Integral Enthalpy of Solution of NH_4NO_3 '1.1758CO(NH_2)₂ Solutions at 25 °C

_						
	solution, g	H,O, g	final m _t	$\Delta H_{\mathbf{D}},$ cal/mol	$\Delta H_{\rm F},$ cal/mol	$\Delta H_{\rm I},$ cal/mol
-			· · ·			
	sta	rting soln, U	AN-20		$m_{t} = 20.$	532
	22.54149	848.8512	0.13234	3962	10329	6367
	23.98397	849.0234	0.14073	3954	10323	6369
	22.87070	849.2027	0.13421	3959	10328	6368
	22.33336	849.0805	0.13109	3965	10330	6364
					av	6367 ± 2
	sta	rting soln, U	AN-15	n	$n_{t} = 15.0$	13
	21.59870	848.9815	0.11618	3645	10340	6695
	21.31013	848.9794	0.11464	3645	10341	6696
	21.13629	848.9423	0.11372	3646	10341	6695
	23.14370	848.9844	0.12443	3640	10334	6694
					av	6695 ± 0
	-4		ANI 10		10.0	
	sta	rting soln, U	AN-10	<i>n</i>	$n_{t} = 10.0$	02
	20.03760	849.1640	0.09327	3188	10355	7167
	22.70026	848.6530	0.10560	3174	10347	7173
	22.86702	848.8762	0.10634	3179	10346	7168
	21.54494	848.9523	0.10024	3183	10351	7167
					av	7169 ± 2
	sta	rting soln, U	AN-5	1	$m_{t} = 4.99$	9
	20.63416	848.8632	0.06838	2330	10372	8042
	20.74020	849.0436	0.06871	2328	10372	8044
	19.72306	849.0524	0.06539	2330	10374	8044
	19.91961	848.8158	0.06605	2336	10374	8038
					av	8042 ± 2

analysis.³ Portions of this solution were diluted with distilled water to prepare three other solutions to be used in the enthalpy of dilution measurements. All four solutions are described in Table IV.

The enthalpy of reaction 3, ΔH_3 , is the integral enthalpy of solution of NH₄NO₃·4.380H₂O in the urea solution at the concentration where the mole ratio of CO(NH₂)₂ to NH₄NO₃ is equal to *a*. Combining ΔH_1 , ΔH_2 , and ΔH_3 in the manner shown gives the enthalpy of reaction 4, ΔH_4 , the integral enthalpy of solution of NH₄NO₃ plus *a*CO(NH₂)₂ in water to form the solution described on the right-hand side of reaction 4. If NH₄NO₃·

Table VII. Enthalpy of Solution of NH₄·1.1758CO(NH₂)^a in Water at 25 °C

% N	molality of NH_4NO_3 . $1.1758CO(NH_2)_2$, m_t (eq 8)	$\Delta H,$ cal/g	
2	0.3452	67.29	
4	0.7283	65.82	
6	1.1558	64.25	
8	1.6360	62.60	
10	2.1793	60.85	
12	2.7990	59.00	
14	3.5123	57.08	
16	4.3423	55.08	
18	5.3202	53.05	
20	6.4893	51.02	
22	7.9117	49.08	
24	9.6798	47.33	
26	11.9372	45.91	
28	14.9193	44.79	
30	19.0422	43.18	
32	25.1151	36.18	

^a NH₄NO₃·1.1758CO(NH₂)₂ = 53.13% NH₄NO₃ and 46.87% CO(NH₂)₂.

aCO(NH₂)₂ is considered as the solute and water as the solvent, the solution can be described in molality NH₄NO₃·1.1758C- $O(NH_2)_2$, m_1 , since a = 1.1758. The determinations of the integral enthalpy of solution for the three values of m_t are described in Table V.

The integral enthalpies of solution for the solutions listed in Table IV were calculated using eq 7 where ΔH_1 is the integral

$$\Delta H_{\rm I} = \Delta H_{\rm F} - \Delta H_{\rm D} \tag{7}$$

enthalpy of solution of the initial solution, $\Delta H_{\rm F}$ is the integral enthalpy of solution of the final solution, and $\Delta H_{\rm D}$ is the enthalpy

of dilution. A weighed amount of the solution was diluted with a weighed amount of water in the solution calorimeter and $\Delta H_{\rm D}$ in cal/mol of NH4NO3.1.1758CO(NH2)2 was measured. The enthalpy, $\Delta H_{\rm F}$, for each measurement was calculated from an equation of ΔH_4 as a function of m_t over the concentration range covered by the enthalpy of solution measurements listed in Table V. The observed enthalpies of dilution and the integral enthalpies of solution calculated from them are listed in Table VI.

The values of $m_{\rm t}$ and the average values of $\Delta H_{\rm I}$ from Table VI were combined with the values for $m_{\rm t}$ and ΔH_4 from Table V, and eq 8, where ΔH is the integral enthalpy of solution in

$$\Delta H = 10.35 - 0.6205m_{\rm t} + 0.03782m_{\rm t}^2 - 0.0008313m_{\rm t}^3 \tag{8}$$

kcal/mol of NH4NO3-1.1758CO(NH2)2, was fitted to the observed values by the "least-squares" method with a standard deviation of 0.06 kcal/mol.

Table VII lists the enthalpies of solution of NH₄NO₃. 1.1758CO(NH₂)₂ in calories per gram to form solutions of various nitrogen concentrations. They were determined by solving eq 8 for values of $m_{\rm t}$ corresponding to the nitrogen concentrations and dividing by 150.657 12, the gram formula weight of NH₄NO₃•1.1758CO(NH₂)₂.

Literature Cited

- Egan, E. P., Jr.; Luff, B. B. J. Chem. Eng. Data 1966, 11, 192.
 Johnson, F. J.; Miller, D. L. J. Assoc. Off. Anal. Chem. 1974, 57, 8.
 Johnson, F. J.; Woodis, T. C., Jr.; Curmings, J. M., Jr. J. Assoc. Off. Anal. Chem. 1974, 57, 10.
- (4) Luff, B. B.; Reed, R. B.; Wakefield, Z. T. J. Chem. Eng. Data 1972, 17,
- (5) Natl. Bur. Stand. (U.S.), Tech. Note 1968, No. 270-3,

Received for review September 5, 1978. Accepted February 10, 1979.

Volume Changes on Mixing 1,4-Dioxane with Cyclopentane, Pentane, and 2-Methylbutane

Miguel A. Leiva, Jerry P. Greenberg, and Charles M. Knobler*

Department of Chemistry, University of California, Los Angeles, California 90024

Measurements are reported of the excess volumes for 1,4-dioxane + *n*-pentane at 25 °C and for 1,4-dioxane + cyclopentane and 1,4-dioxane + 2-methylbutane at 20 °C. The excess volume V_m^E is positive and nearly symmetric In mole fraction for the cyclopentane mixture but changes from positive to negative with increasing mole fraction of dioxane in the other two systems. Similar variations in V_m^E with degree of branching have been observed in mixtures of C_s-alkanes with 1,4-dioxane, nitroethane, and 1-chloropentane.

Measurements at 40 °C of the excess volumes, V_m^{E} , for binary liquid mixtures of nitroethane with hexane isomers and with cyclohexane (1, 2) show a striking dependence on the number of methyl groups in the hexane. For the mixture with cyclohexane, V_m^{E} is positive and nearly symmetric in mole fraction. As the number of methyl groups in the hexane is increased, the excess volume becomes increasingly smaller and skewed, eventually changing from positive to negative with increasing mole fraction of nitroethane in the 2-methylpentane system. The excess volume for the 2,2-dimethylbutane mixture changes from positive to negative at about 0.2 mol fraction nitroethane.

Similar trends have been observed in mixtures of hexanes with 1,4-dioxane (2) and with 1-chloropentane (3), strengthening the supposition that they reflect the properties of the hexane. Mixtures of hexanes with hexadecane also display a trend toward increasingly negative volume changes (4), but there is no accompanying change in the shape of the V_m^{E} vs. mole fraction curve. A recent study of cyclohexane + hexadecane (5) demonstrates that the V_m^E is positive.

No completely satisfactory explanation of these trends has been put forward. In an effort to gain more insight into the problem, we are investigating volume changes in related systems. We report here results for binary mixtures of 1.4dioxane with cyclopentane, n-pentane, and 2-methylbutane.

Experimental Section

Volume Change Measurements. Details of the measurements, which were made with a continuous dilution dilatometer,